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Abstract

Let a � b = max(a; b) and a 
 b = a + b for a; b 2 R := R [ f�1g.
By max-algebra we understand the analogue of linear algebra developed
for the pair of operations (�;
), extended to matrices and vectors. The
symbol Ak stands for the kth max-algebraic power of a square matrix
A. Let us denote by " any vector whose every component is �1: The
max-algebraic eigenvalue-eigenvector problem is the following: Given A 2
Rn�n, �nd � 2 R; x 2 Rn; x 6= " such that A
x = �
x: Certain problems
of industrial production lead to the following task: Given A 2 Rn�n, is
there a k such that Ak 
 x is a max-algebraic eigenvector of A? If the
answer is a¢ rmative for every x 6= " then A is called robust. We present
a description of the sets of all eigenvalues and eigenvectors for a given
matrix A and then derive characterisations of robust matrices.

1 Introduction

Let a � b = max(a; b) and a 
 b = a + b for a; b 2 R := R [ f�1g. Obviously,
�1 plays the role of a neutral element for �: Throughout the paper we denote
�1 by " and for convenience we also denote by the same symbol any vector or
matrix whose every component is �1: If a 2 R then the symbol a�1 stands for
�a:
By max-algebra we understand the analogue of linear algebra developed for

the pair of operations (�;
), extended to matrices and vectors. That is if
A = (aij); B = (bij) and C = (cij) are matrices of compatible sizes with entries
from R, we write C = A�B if cij = aij � bij for all i; j and C = A
B if cij =
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P�
k aik
bkj = maxk(aik+bkj) for all i; j. If � 2 R then �
A = (�
 aij). If A

is a square matrix then the iterated product A
A
 :::
A in which the symbol
A appears k-times will be denoted by Ak. We also denote �(A) = A�A2� ::: .
A square matrix is called diagonal, notation diag(d1; :::; dn); if its diago-

nal entries are d1; :::; dn and o¤-diagonal entries are ": We also denote I =
diag(0; :::; 0): Obviously, A
 I = I 
A = A whenever A and I are of compati-
ble sizes. By de�nition A0 = I for any square matrix A.
An ordered pair D = (N;F ) is called a digraph if N is a non-empty set (of

nodes) and F � N �N (the set of arcs). A sequence � = (v1; :::; vp) of nodes is
called a path (in D) if p = 1 or p > 1 and (vi; vi+1) 2 F for all i = 1; :::; p � 1:
The node v1 is called the starting node and vp the endnote of �, respectively.
If there is a path in D with starting node u and endnote v then we say that v
is reachable from u, notation u ! v. Thus u ! u for any u 2 N: As usual a
digraph D is called strongly connected if u! v and v ! u for any nodes u; v in
D. A path (v1; :::; vp) is called a cycle if v1 = vp and p > 1 and it is called an
elementary cycle if, moreover, vi 6= vj for i; j = 1; :::; p� 1; i 6= j:
In the rest of the paper N = f1; :::; ng: The digraph associated with A =

(aij) 2 R
n�n

is
DA = (N; f(i; j); aij > "g):

The matrix A is called irreducible if DA is strongly connected, reducible other-
wise. Thus, every 1� 1 matrix is irreducible.
The max-algebraic eigenvalue-eigenvector problem (brie�y eigenproblem) is

the following:
Given A 2 Rn�n, �nd � 2 R; x 2 Rn; x 6= " such that A
 x = �
 x:
This problem has been studied since the 1960�s [10]. One of the motivations

was the following analysis of the steady-state behaviour of production systems:
Suppose that machines M1; :::;Mn work interactively and in stages. In each
stage all machines simultaneously produce components necessary for the next
stage of some or all other machines. Let xi(r) denote the starting time of
the rthstage on machine i (i = 1; :::; n) and let aij denote the duration of the
operation at which machine Mj prepares the component necessary for machine
Mi in the (r + 1)st stage (i; j = 1; :::; n). Then

xi(r + 1) = max(x1(r) + ai1; :::; xn(r) + ain) (i = 1; :::; n; r = 0; 1; :::)

or, in max-algebraic notation

x(r + 1) = A
 x(r) (r = 0; 1; :::)

where A = (aij) is called a production matrix. We say that the system reaches
a steady state if it eventually moves forward in regular steps, that is if for some
� and r0 we have x(r+1) = �
x(r) for all r � r0. Obviously, a steady state is
reached immediately if x(0) is an eigenvector of A corresponding to an eigenvalue
�: However, if the choice of a start-time vector is restricted we may need to �nd
out for which vectors a steady state will be reached. A particular task is to
characterise those production matrices for which a steady state is reached with
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any start-time vector. In accordance with the terminology in control theory
such matrices are called robust and it is the primary objective of the present
paper to provide a characterisation of such matrices. Note that this task for
irreducible matrices has been solved in [7].
Full solution of the eigenproblem in the case of irreducible matrices has

been presented in [11] and [16], see also [22]. A general spectral theorem for
reducible matrices was presented in [13] and [3]. In Section 2 we provide a proof
of this theorem which enables us to analyse the set of eigenvectors and give
answers in Section 3 to some speci�c questions related to the �niteness of the
eigenvectors. These results are compared with those for non-negative matrices
in conventional linear algebra. We also show how to e¢ ciently �nd a basis of the
eigenspace corresponding to an eigenvalue. These results are used in Section 4 to
provide a characterisation of robustness for reducible matrices, thus completing
the solution of this question for all A 2 Rn�n:

Unless stated otherwise, we assume everywhere in this paper that n � 1 is
an integer, A = (aij) 2 R

n�n
and � 2 R: Let us de�ne

V (A; �) = fx 2 Rn;A
 x = �
 xg;

�(A) = f� 2 R;V (A; �) 6= f"gg;

V (A) =
S

�2�(A)
V (A; �);

V +(A; �) = V (A; �) \ Rn;
V +(A) = V (A) \ Rn:

Note that if A = " then �(A) = f"g and V (A) = Rn:

A set S � Rn is called a (max-algebraic) subspace if u; v 2 S; �; � 2 R imply
� 
 u � � 
 v 2 S: It is easily seen that V (A; �) (the set containing " and all
eigenvectors of A corresponding to �, if any) is a subspace for all � 2 R:
Let S � Rn be a subspace. A vector v 2 Rn is called an extremal in S if

v = u � w for u; v 2 S implies v = u or v = w: We say that v1; :::; vm 2 S is a
basis of S if

1. v1; :::; vm are extremals in S and

2. for every v 2 S we have v =
P�

i �i 
 vi for some �1; :::; �m 2 R:

If � = (i1; :::; ip) is a path in DA then the weight of � is w(�;A) = ai1i2 +
ai2i3 + ::: + aip�1ip if p > 1 and " if p = 1. The symbol �(A) stands for the
maximum cycle mean of A, that is if DA has at least one cycle then

�(A) = max
�
�(�;A); (1)
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where the maximisation is taken over all cycles in DA and

�(�;A) =
w(�;A)

k
(2)

denotes the mean of the cycle � = (i1; :::; ik; i1). Note that �(A) remains un-
changed if the maximisation in (1) is taken over all elementary cycles. If DA is
acyclic we set �(A) = ": Various algorithms for �nding �(A) exist. One of them
is Karp�s [18] of computational complexity O(nm) where m is the number of
�nite entries in A (or, equivalently the number of arcs in DA).
A is called de�nite if �(A) = 0: It is easily seen that V (�
A) = V (A) and

�(� 
 A) = � 
 �(A) for any � 2 R: Hence �(A)�1 
 A is de�nite whenever
�(A) > ":
The notation A = (a1; :::; an) means that a1; :::; an are the column vectors of

A: If A is de�nite then �(A) = A�A2 � :::�An [11]. In this case �(A) = (gij)
is the matrix of the lengths of the longest paths in DA and so, speci�cally, if
�(A) = (g1; :::; gn) then gi is the vector of the lengths of the longest paths to
node i (i = 1; :::; n) [11]. �(A) is called a metric matrix ; it can be found using
the Floyd-Warshall algorithm using O(n3) operations [12].
We also denote E(A) = fi 2 N ;9� = (i = i1; :::; ik; i1) : �(�;A) = �(A)g:

The elements of E(A) are called eigen-nodes (of A), or critical nodes. A cycle
� is called critical if �(�;A) = �(A). The critical digraph of A is the digraph
C(A) with the set of nodes N ; the set of arcs is the union of the sets of arcs
of all critical cycles. It is well known that all cycles in a critical digraph are
critical [7]. Two nodes i and j in C(A) are called equivalent (notation i � j) if
i and j belong to the same critical cycle of A:
Note that if �(A) = " then �(A) = f"g and the eigenvectors of A are exactly

vectors (x1; :::; xn)
T 2 Rn such that xj = " whenever the jth column of A is not

" (clearly in this case at least one column of A is "). We will therefore usually
assume that �(A) > ":

Theorem 1.1 [11] Suppose A = (aij) 2 R
n�n

; �(A) > " and �((�(A))�1 

A) = (gij) = (g1; :::; gn): Then

� i 2 E(A) () gii = 0

� If i; j 2 E(A) then gi = �
 gj for some � 2 R if and only if i � j:

If i; j 2 E(A) and gi = �
 gj then gi and gj are called equivalent. Clearly,
� constitutes a relation of equivalence in N:

Theorem 1.2 [1] Suppose A = (aij) 2 R
n�n

; �(A) > " and �((�(A))�1
A) =
(g1; :::; gn): Then we obtain a basis of V (A; �(A)) by taking exactly one gj for
each equivalence class.

Being motivated by Theorem 1.2 the vectors gi; i 2 E(A); will be called the
fundamental eigenvectors of A (FEV).
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Theorem 1.3 (Cuninghame-Green [11], Theorem 25.9) Suppose A = (aij) 2
Rn�n; A 6= ". Then the following hold:

1. V +(A) � V (A; �(A)):

2. V +(A) 6= ; if and only if �(A) > " and in DA there is

(8j 2 N)(9i 2 E(A))j ! i:

3. If, moreover, V +(A) 6= ; then

V +(A) = f
X

i2E(A)

�
�i 
 gi;�i 2 Rg

where �(�(A)�1 
A) = (g1; :::; gn):

Corollary 1.1 A irreducible ) V +(A) 6= ;:

As we will see later (Theorem 2.1) in fact V (A) = V +(A)[f"g = V (A; �(A))
and thus �(A) = f�(A)g if A is irreducible. The fact that �(A) is the unique
eigenvalue of an irreducible matrix A was proved in [10] and then independently
in [22]. The description of V +(A) for irreducible matrices as given in part 3 of
Theorem 1.3 was also proved in [16].
Obviously

V +(A) [ f"g = f�((�(A))�1 
A)
 z; z 2 Rn; zj = " for all j =2 E(A)g:

and also, if non-empty,

V +(A) = f
X

i2E�(A)

�
�i 
 gi;�i 2 Rg

where E�(A) is any maximal set of indices of non-equivalent FEV of A:

If
1 � i1 < i2 < ::: < ik � n;K = fi1; :::; ikg � N

then A[K] denotes the principal submatrix0@ ai1i1 ::: ai1ik
::: ::: :::
aiki1 ::: aikik

1A
of the matrix A = (aij) and x[K] denotes the subvector (xi1 ; :::; xik)

T of the
vector x = (x1; :::; xn)T 2 R

n
.

If D = (N;E) is a digraph and K � N then D[K] denotes the induced
subgraph of D; that is

D[K] = (K;E \ (K �K)):

Obviously, DA[K] = D[K].
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2 Finding All Eigenvalues

The symbol A � B means that A can be obtained from B by a simultaneous
permutation of rows and columns. Recall that DA can be obtained from DB by
a renumbering of the nodes if A � B. Hence if A � B then A is irreducible if
and only if B is irreducible.
It is obvious that if A 
 x = � 
 x and a matrix B arises from A by a

simultaneous permutation of the rows and columns then the same permutation
applied to the components of x yields a vector y such that B
y = �
y: Hence:

Lemma 2.1 �(A) = �(B) if A � B and there is a bijection between V (A) and
V (B).

The following lemma is of a special signi�cance for the rest of the paper.

Lemma 2.2 Let A = (aij) 2 R
n�n

; � 2 �(A) and x 2 V (A; �): If x =2 V +(A; �)
then n > 1;

A �
�
A(11) "
A(21) A(22)

�
;

� = �(A(22)) and hence A is reducible.

Proof. Permute the rows and columns of A simultaneously so that the vector

arising from x by the same permutation of its components is x0 =
�
x(1)

x(2)

�
;

where x(1) = " 2 Rp; x(2) 2 Rn�p for some p (1 � p < n) and A � A0 =�
A(11) A(12)

A(21) A(22)

�
; where A(11) is p � p. The equality A0 
 x0 = � 
 x0 now

yields blockwise:

A(12) 
 x(2) = "

A(22) 
 x(2) = �
 x(2)

Since x(2) is �nite, it follows from Theorem 1.3 that � = �(A(22)); also clearly
A(12) = ":

Theorem 2.1 Let A = (aij) 2 R
n�n

: Then V (A) = V +(A) if and only if A is
irreducible.

Proof. It remains to prove the "only if" part since the "if" part follows from

Lemma 2.2 immediately. IfA is reducible then n > 1 andA �
�
A(11) "
A(21) A(22)

�
,

where A(22) is irreducible. By setting � = �(A(22)); x(2) 2 V +(A22); x =�
"
x(2)

�
2 Rn we see that x 2 V (A)� V +(A).
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Every matrix A = (aij) 2 R
n�n

can be transformed in linear time by si-
multaneous permutations of the rows and columns to a Frobenius normal form
(FNF) [20] 0BB@

A11 " ::: "
A21 A22 ::: "
::: ::: ::: :::
Ar1 Ar2 ::: Arr

1CCA (3)

where A11; :::; Arr are irreducible square submatrices of A. If A is in an FNF
then the corresponding partition of the node set N of DA will be denoted as
N1; :::; Nr and these sets will be called classes (of A). It follows that each of the
induced subgraphs DA[Ni] (i = 1; :::; r) is strongly connected and an arc from
Ni to Nj in DA exists only if i � j: As a slight abuse of language we will also
say for simplicity that �(Ajj) is the eigenvalue of Nj :
If A is in an FNF, say (3), then the condensation digraph, notation CA; is

the digraph (fN1; :::; Nrg; f(Ni; Nj); (9k 2 Ni)(9` 2 Nj)ak` > "g):
The symbol Ni ! Nj means that there is a directed path from a node in

Ni to a node in Nj in DA (and therefore from each node in Ni to each node in
Nj). Equivalently, there is a directed path from Ni to Nj in CA.
If there are neither outgoing nor incoming arcs from or to an induced sub-

graph CA[fNi1 ; :::; Nisg] (1 � i1 < ::: < is � r) and no proper subdigraph has
this property then the submatrix0BB@

Ai1i1 " ::: "
Ai2i1 Ai2i2 ::: "
::: ::: ::: :::
Aisi1 Aisi2 ::: Aisis

1CCA
is called an isolated superblock (or just superblock). The induced subdigraph
of CA corresponding to an isolated superblock is a directed tree (though the
underlying undirected graph is not necessarily acyclic). CA is the union of a
number of such directed trees. The nodes of CA with no incoming arcs are called
the initial classes, those with no outgoing arcs are called the �nal classes. Note
that the directed tree corresponding to an isolated superblock may have several
initial and �nal classes.
For instance the condensation digraph for the matrix0BBBBBB@

A11 " " " " "
� A22 " " " "
� � A33 " " "
� " " A44 " "
" " " " A55 "
" " " " � A66

1CCCCCCA (4)

can be seen in Figure 1 (note that here and elsewhere � indicates submatrix
di¤erent from "). It consists of two superblocks and six classes including three
initial and two �nal ones.
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A44 A33

A11 A22

A66

A55

Figure 1: Condensation digraph for matrix (4)

Lemma 2.3 If x 2 V (A); Ni ! Nj and x[Nj ] 6= " then x[Ni] is �nite. In
particular, x[Nj ] is �nite.

Proof. Suppose that x 2 V (A; �) for some � 2 R: Fix s 2 Nj such that xs > ":
Since Ni ! Nj we have that for every r 2 Ni there is a positive integer q
such that brs > " where B = Aq = (bij): Since x 2 V (B; �q) we also have
�q 
 xr � brs 
 xs > ": Hence xr > ":

Theorem 2.2 (Spectral Theorem) Let (3) be an FNF of a matrix A = (aij) 2
Rn�n: Then

�(A) = f�(Ajj);�(Ajj) = max
Ni!Nj

�(Aii)g:

Proof. Note �rst that
�(A) = max

i=1;:::;r
�(Aii) (5)

for a matrix A in FNF (3).
Suppose �(Ajj) = maxf�(Aii);Ni ! Njg for some j 2 R = f1; :::; rg:

Denote S2 = fi 2 R;Ni ! Njg; S1 = R � S2; Mp =
S
i2Sp

Ni (p = 1; 2): Then

�(Ajj) = �(A[M2]) and A �
�
A[M1] "
� A[M2]

�
:

If �(Ajj) = " then at least one column, say `th in A[M2] is ": We set x` to
any real number and xj = " for j 6= l: Then x 2 V (A; �(Ajj)):
If �(Ajj) > " then A[M2] has a �nite eigenvector by Theorem 1.3, say �x: Set

x[M2] = �x and x[M1] = ": Then x = (x[M1]; x[M2]) 2 V (A; �(Ajj)):
Suppose now x 2 V (A; �):
If � = " then A has an " column, say kth, thus akk = ": Hence the 1 �

1 submatrix (akk) is a diagonal block in an FNF of A: In the corresponding
decomposition of N one of the sets, say Nj ; is fkg: The set fi;Ni ! Njg = fjg
and the theorem statement follows.
If � > " and x 2 V +(A) then � = �(A) (cf. Theorem 1.3) and the statement

now follows from (5).
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If � > " and x =2 V +(A) then similarly as in the proof of Lemma 2.2 permute

the rows and columns of A simultaneously so that x =
�
x(1)

x(2)

�
; where x(1) =

" 2 Rp; x(2) 2 Rn�p for some p (1 � p < n). Hence A �
�
A(11) "
A(21) A(22)

�
and

we can assume without loss of generality that both A(11) and A(22) are in an

FNF and therefore also
�
A(11) "
A(21) A(22)

�
is in an FNF. Let

A(11) =

0BB@
Ai1i1 " ::: "
Ai2i1 Ai2i2 ::: "
::: ::: ::: :::
Aisi1 Aisi2 ::: Aisis

1CCA

A(22) =

0BB@
Ais+1is+1 " ::: "
Ais+2is+1 Ais+2is+2 ::: "

::: ::: ::: :::
Aiqis+1 Aiqis+2 ::: Aiqiq

1CCA
We have � = �(A(22)) = �(Ajj) = maxi=s+1;:::;q �(Aii) where j 2 fs+ 1; :::; qg.
It remains to say that if Ni ! Nj then i 2 fs+ 1; :::; qg.
Note that this Theorem has already been proved in [13] and [3]. Spectral

properties of reducible matrices were also studied in [4]. Signi�cant correlation
exists between the max-algebraic spectral theory and that for non-negative ma-
trices in linear algebra [21], [5], see also [20]. For instance the Frobenius normal
form and accessibility between classes play a key role in both theories. The max-
imum cycle mean corresponds to the Perron root for irreducible (nonnegative)
matrices and �nite eigenvectors in max-algebra correspond to positive eigenvec-
tors in the non-negative spectral theory. However there are also di¤erences, see
Remark 3.2 after Theorem 3.2 below.

Let A be in the FNF (3). If

�(Ajj) = max
Ni!Nj

�(Aii)

then Ajj (and also Nj or just j) will be called spectral. Thus �(Ajj) 2 �(A) if
j is spectral but not necessarily the other way round.

Corollary 2.1 All initial classes of CA are spectral.

Proof. Initial classes have no predecessors and so the condition of the Theorem
is satis�ed.

Corollary 2.2 �(A) 2 �(A) for every matrix A:

Proof. If A is in an FNF, say (3) ; then �(A) = maxi=1;:::;r �(Aii) = �(Ajj) for
some j and so the condition of the Theorem is satis�ed.
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Figure 2: A condensation digraph with six spectral nodes

Corollary 2.3 1 � j�(A)j � n for every A 2 Rn�n.

Proof. Follows from the previous corollary and from the fact that the number
of classes of A is at most n.

Corollary 2.4 V (A) = V (A; �(A)) if and only if all initial classes have the
same eigenvalue �(A):

Proof. The eigenvalues of all initial classes are in �(A) since all initial classes
are spectral, hence all must be equal to �(A) if �(A) = f�(A)g: On the other
hand, if all initial classes have the same eigenvalue �(A); and � is the eigenvalue
of any spectral class then

� � �(A) = max
i
�(Aii)

since there is a path from some initial class to this class and thus � = �(A).
Figure 2 shows a condensation digraph with 14 classes including two ini-

tial classes and four �nal ones. The numbers indicate the eigenvalues of the
corresponding classes. Six bold classes are spectral, the others are not.
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3 Finding All Eigenvectors

Note that the unique eigenvalues of all classes (that is diagonal blocks of an
FNF) can be found in O(n3) time by applying Karp�s algorithm (see Section
1) to each block. The condition for identifying all spectral submatrices in an
FNF provided in Theorem 2.2 enables us to �nd them in O(r2) � O(n2) time
by applying standard reachability algorithms to CA.

Let A 2 Rn�n be in the FNF (3), N1; :::; Nr be the classes of A and R =
f1; :::; rg: Suppose � 2 �(A); � > " and denote I(�) = fi 2 R;�(Ni) = �;Ni
spectralg. Similarly as in Section 1 we denote �(��1 
A) = (gij) = (g1; :::; gn):
Note that �(��1 
A) may now include entries equal to +1: Let us denote

E(�) =
S

i2I(�)
E(Aii) = fj 2 N ; gjj = 0; j 2

S
i2I(�)

Nig:

Two nodes i and j in E(�) are called � - equivalent (notation i �� j) if i
and j belong to the same cycle of cycle mean �:

Theorem 3.1 Suppose A 2 Rn�n and � 2 �(A); � > ". Then gj 2 R
n
for all

j 2 E(�) and a basis of V (A; �) can be obtained by taking one gj for each ��
equivalence class.

Proof. Let us denote M =
S

i2I(�)
Ni: By Lemma 2.1 we may assume without

loss of generality that A is of the form�
� "
� A[M;M ]

�
Hence �

� "
� C

�
where C = �((�(A[M;M ]))�1 
 A[M;M ]); and the theorem statement now
follows by Theorems 1.1 and 1.2 since � = �(A[M;M ]) and thus �� equivalence
for A is identical with � equivalence for A[M;M ]:

Corollary 3.1 A basis of V (A; �) for � 2 �(A) can be found using O(n3)
operations and we have

V (A; �) = f�(��1 
A)
 z; z 2 Rn; zj = " for all j =2 E(�)g:

Alternatively, it follows from the proofs of Lemma 2.2 and Theorem 2.2 that
V (A; �) can also be found as follows: If I(�) = fjg then de�ne

M2 =
S

Ni!Nj

Ni;M1 = N �M2:
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Hence
V (A; �) = fx;x[M1] = "; x[M2] 2 V +(A[M2;M2])g:

If the set I(�) consists of more than one index then the same process has to be
repeated for each nonempty subset of I(�) that is for each J � I(�); J 6= ; we
set S =

S
j2J

Nj and

M2 =
S

Ni!S

Ni;M1 = N �M2:

Theorem 3.2 V +(A) 6= ; if and only if �(A) is the eigenvalue of all �nal
classes (in all superblocks).

Proof. The set M1 in the above construction must be empty to obtain a
�nite eigenvector, hence a class in S must be reachable from every class of its
superblock. This is only possible if S is the set of all �nal classes since no class
is reachable from a �nal class (other than the �nal class itself). Conversely, if all
�nal classes have the same eigenvalue �(A) then for � = �(A) the set S contains
all the �nal classes, they are reachable from all classes of their superblocks, and
consequently M1 = ;, yielding a �nite eigenvector.

Corollary 3.2 V +(A) = ; if and only if a �nal class has eigenvalue less than
�(A):

Remark 3.1 Note that a �nal class with eigenvalue less than �(A) may not be
spectral and so �(A) = f�(A)g is possible even if V +(A) = ;: For instance in
the case of

A =

0@ 1 " "
" 0 "
0 0 1

1A
we have �(A) = 1; but V +(A) = ;.

Remark 3.2 Following the terminology of non-negative matrices we say that a
class is basic if its eigenvalue is �(A): It folows from Theorem 3.2 that V +(A)
6= ; if basic classes and �nal classes coincide. Obviously this requirement is not
necessary, which is in contrast to the spectral theory of nonnegative matrices
where for A to have a positive eigenvector it is necessary and su¢ cient that
basic classes (that is those whose eigenvalue is the Perron root) are exactly the
�nal classes.

Remark 3.3 By Corollary 2.2 for any matrix A at least one of the sets V (A; �(A))�
V +(A; �(A)); V +(A; �(A)) is nonempty. We had

V (A; �(A))� V +(A; �(A)) 6= ; = V +(A; �(A))

in the previous example. For any irreducible matrix we have

V (A; �(A))� V +(A; �(A)) = ; 6= V +(A; �(A))

and both sets are nonempty if for instance A = I:

12



4 Robustness of matrices

Let A = (aij) 2 R
n�n

and x 2 Rn. The orbit of A with starting vector x is the
sequence O(A; x) = fAr 
 x; r = 0; 1; :::g: Let V 0(A) = V (A)� f"g:
Let

T (A) = fx 2 Rn;O(A; x) \ V 0(A) 6= ;g:

Obviously,
V 0(A) � T (A) � Rn � f"g

holds for every matrix A 2 Rn�n:

It may happen that T (A) = V 0(A); for instance when A is the irreducible

matrix
�
�1 0
0 �1

�
: Here �(A) = 0 and by Theorem 1.3

V 0(A) = f�
 (0; 0)T ;� 2 Rg:

Since

A

�
a
b

�
= (max(a� 1; b);max(a; b� 1))T ;

we have that A

�
a
b

�
2 V 0(A) if and only if a = b; that is A
 x 2 V 0(A) if

and only if x 2 V 0(A). Hence T (A) = V 0(A):
T (A) may also be di¤erent from both V 0(A) and Rn � f"g : Consider the

irreducible matrix

A =

0@ �1 0 �1
0 �1 �1

�1 �1 0

1A :
Here �(A) = 0 and x = (�2;�2; 0)T =2 V 0(A); but A
x = (�1;�1; 0)T 2 V 0(A);
showing that T (A) 6= V 0(A): At the same time if y = (0;�1; 0)T then Ak 
 y is
y for k even and (�1; 0; 0)T for k odd, showing that y =2 T (A).

De�nition 4.1 If T (A) = Rn � f"g then A is called robust.

Hence A is robust if and only if for every x 2 Rn; x 6= " we have Ak+1
 x =
�
Ak 
 x for some positive integer k and � 2 �(A): It is easily proved that if
A � B then A is robust if and only if B is robust. Therefore we may without
loss of generality investigate robustness of matrices arising from a given matrix
by a simultaneous permutation of the rows and columns.
Now we present some characterizations of robust matrices. First we observe

that matrices with an " column are not robust.
Following the terminology introduced in [11] we say that A is column R-astic

if it has no " column.

13



Lemma 4.1 If A 2 Rn�n is column R-astic and x 6= " then Ak 
 x 6= " for
every k. Hence if A 2 Rn�n is column R-astic then Ak is column R-astic for
every k. This is true in particular when A is irreducible and n > 1:

Proof. Immediate from de�nition.
Note that every node of a non-trivial strongly connected digraph has at least

one incoming arc and so every irreducible n�n matrix (n > 1) is column R-astic
(but not conversely).

We say that A = (aij) 2 R
n�n

is ultimately periodic of period p if there is a
natural number p such that the following holds for some � 2 R and k0 natural:

Ak+p = �p 
Ak for all k � k0:

If p is the smallest natural number with this property then we call p the period of
A and denote it as p(A): If A is not ultimately periodic then we set p(A) = +1:
It is easily seen that � = �(A) and every column of Ak is in V (Ap; �p) if p =
p(A) < +1 and A is column R-astic. Robustness of irreducible matrices was
studied in [7] and we now mention some results of that paper before we proceed
with the reducible case. Note that if A is the 1 � 1 matrix (") then A is
irreducible, p(A) = 1 but A is not robust. This is an exceptional case that has
to be excluded in the statements that follow.

Theorem 4.1 [7] Let A 2 Rn�n be irreducible, A 6= ". Then A is robust if and
only if p(A) = 1.

Corollary 4.1 [7] Let A 2 Rn�n be irreducible, A 6= ". If p(A) = 1; x 6= " then
Ak 
 x is �nite for all su¢ ciently big k:

It was shown in [7] how the next statement follows from the results in [6],
Theorem 3.4.5.

Theorem 4.2 Let A = (aij) 2 R
n�n

be irreducible. Then Ak is irreducible for
every k = 1; 2; ::: if and only if the lengths of all cycles in DA are co-prime.

Theorem 4.3 Let A = (aij) 2 R
n�n

; A 6= " be irreducible. Then A is robust if
and only if the eigenspaces of Ak coincide for every k = 1; 2; :::.

Previous results are closely related to the famous "Cyclicity Theorem", The-
orem 4.4 below. For this we need to introduce a few more concepts: Let D0 be
a maximal strongly connected subdigraph of a digraph D: Then D0 is called
a strongly connected component of D and the greatest common divisor of all
directed cycles in D0 is called the cyclicity of D0; notation �(D0): By de�nition
�(D0) = 1 if D0 consists only of a single node. The cyclicity of D is the least
common multiple of cyclicities of all strongly connected components of D.

Theorem 4.4 Every irreducible matrix A is ultimately periodic and p(A) =
�(C(A)):

14



Corollary 4.2 Let A = (aij) 2 R
n�n

be irreducible and robust. Then Ak is
irreducible for every k = 1; 2; :::.

Proof. If the lengths of all critical cycles in DA are co-prime then also the
lengths of all cycles are co-prime. The rest follows from Theorem 4.2.
Note that the "if" statement of Theorem 4.1 follows immediately from The-

orem 4.4.
First part of Theorem 4.4 was proved for �nite matrices in [11]. A proof of

the whole statement was presented in [8], see also [9] for an overview without
proofs. A proof in a more general setting covering the case of �nite matrices is
given in [19]. The irreducible case is also proved in [1], [17], [2] and [14]. Note
that a di¤erent generalization to the reducible case is studied in [15].

We now continue by studying robustness of reducible matrices. Theorem 4.1

can straightforwardly be generalized to a class of reducible matrices:

Theorem 4.5 Let A 2 Rn�n be column R-astic and j�(A)j = 1 (that is �(A) =
f�(A)g). Then A is robust if and only if p(A) = 1.

Proof. Let p(A) = 1; x 2 Rn � f"g and k � k0: Then Ak 
 x 2 R
n � f"g by

Lemma 4.1, Ak+1 
 x = � 
 Ak 
 x and so Ak 
 x 2 V (A; �) and � = �(A).
Hence A is robust and all columns of Ak are eigenvectors of A.
Now let A be robust and all columns of Ak0 be eigenvectors of A corre-

sponding to the unique eigenvalue �(A). Then A
Ak0 = �(A)
Ak0 and thus
A
Ak = �(A)
Ak for all k � k0: So p(A) = 1:
We will now characterise robust reducible matrices in general - we start with

two lemmas.

Lemma 4.2 If A 2 Rn�n is robust then " =2 �(A):

Proof. If " 2 �(A) then by Lemma 4.1 some column, say kth is ": Take x 2 Rn

so that xk = 0 and xj = " for j 6= k: Then Ak 
 x = " for every k and thus
Ak 
 x is never an eigenvector.
Recall that if A = (aij) 2 R

n�n
is in the FNF (3) and N1; :::; Nr are the

classes of A then we have denoted R = f1; :::; rg: If i 2 R then we now also
denote Ti = fk 2 R;Nk �! Nig and Mi =

S
j2Ti

Nj : A class Ni of A is called

trivial if Ni contains only one index, say k; and akk = ":

Lemma 4.3 If every non-trivial class of A 2 Rn�n has eigenvalue 0 and period
1 then Ak+1 = Ak for some k:

Proof. We prove the statement by induction on the number of classes.
If A has only one class then either this class is trivial or A is irreducible. In

both cases the statement follows immediately.
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If A has at least two classes then by Lemma 2.1 we can assume without loss
of generality:

A =

�
A11 "
A21 A22

�
and thus

Ak =

�
Ak11 "
Bk Ak22

�
where

Bk =
X

i+j=k�1

�
Ai22 
A21 
A

j
11:

By the induction hypothesis there are k1 and k2 such that

Ak1+111 = Ak111 and A
k2+1
22 = Ak222:

It is su¢ cient now to prove that

Bk =
X� n

Ai22 
A21 
A
j
11; i � k2; j � k1; i = k2 or j = k1

o
(6)

holds for all k � k1 + k2 + 1:
For all i; j we have

Ai22 
A21 
A
j
11 = A

i0

22 
A21 
A
j0

11

where i0 = min(i; k2); j0 = min(j; k1): If i+ j + 1 = k � k1 + k2 + 1 then either
i � k2 or j � k1: Hence either i0 = k2 or j0 = k1 and therefore � in (4) follows.
For � let i = k2 (say) and j � k1: Since k � k1 + k2 + 1 � j + i + 1; we have
k � j � 1 � i = k2 and thus

Ai22 
A21 
A
j
11 = A

k�j�1
22 
A21 
Aj11 � Bk:

Theorem 4.6 Let A 2 Rn�n; A 6= " be in the FNF (3), N1; :::; Nr be the classes
of A and R = f1; :::; rg: Then A is robust if and only if the following hold:

1. All non-trivial classes N1; :::; Nr are spectral.

2. If i; j 2 R;Ni; Nj are non-trivial and i =2 Tj and j =2 Ti then �(Ni) =
�(Nj):

3. p(Ajj) = 1 for all j 2 R:

Proof. If r = 1 then A is irreducible and the statement follows by Theorem
4.1. We will therefore assume r � 2 in this proof.
Let A be robust.
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1. Let i 2 R;Aii 6= " and x 2 R
n
be de�ned by taking any xs 2 R for s 2Mi

and xs = " for s =2 Mi: Then Ak+1 
 x = � 
 Ak 
 x for some k and
� 2 �(A). Let z = Ak 
 x: Then z[Mi] is �nite since A[Mi] has no " row
and A[Mi]
z[Mi] = (A
z)[Mi] = �
z[Mi] and thus z[Mi] 2 V +(A[Mi]):
By Lemma 4.2 � > " and so by Theorem 1.3 then �(Nt) � � (Ni) for all
t 2 Ti: Hence Ni is spectral.

2. Suppose i; j 2 R;Ni; Nj are non-trivial and i =2 Tj ; j =2 Ti: Let x 2 R
n
be

de�ned by taking any x[Ni] 2 V +(A[Ni]); x[Nj ] 2 V +(A[Nj ]) and xs = "
for s 2 N�Ni[Nj : Then Ak+1
x = �
Ak
x for some k and � 2 �(A).
Denote z = Ak 
 x: Then z[Nj ] is �nite. Since i =2 Tj we have auv = " for
all u 2 Ni and v 2 Nj : Hence

�
 z[Nj ] = (A
 z)[Nj ] = A[Nj ]
 z[Nj ]

and so by Theorem 1.3 �(Nj) = �: Similarly it is proved that �(Ni) = �:

3. Let j 2 R and A[Nj ] 6= " (otherwise the statement follows trivially). Let
x 2 Rn be any vector such that x 6= " and xs = " for s =2 Nj : Then
Ak+1 
 x = �
 Ak 
 x for some k and � 2 �(A). Let z = Ak 
 x: Since
z[Nj ] = (A[Nj ])

k 
 x[Nj ] we may assume without loss of generality that
z[Nj ] is �nite due to Corollary 4.1. At the same time A[Nj ] 
 z[Nj ] =
(A 
 z)[Nj ] = � 
 z[Nj ] and thus z[Nj ] 2 V (A[Nj ]): Hence A[Nj ] is
irreducible and robust. Thus by Theorem 4.1 p (A[Nj ]) = p(Ajj) = 1:

Suppose now that conditions 1.-3. are satis�ed. We prove then that A is
robust by induction on the number of classes of A: As already observed at the
beginning of this proof the case r = 1 follows from Theorem 4.1. Suppose now
that r � 2 and let x 2 Rn; x 6= ": Let

U = fi 2 N ; (9j) i �! j; xj 6= "g:

We have �
Ak 
 x

�
[U ] = (A[U;U ])

k 
 x[U ]

and �
Ak 
 x

�
i
= "

for i =2 U: Therefore we may assume without loss of generality that U = N: Let
M be a �nal class in CA; clearly x[M ] 6= " by the de�nition of U: Let us denote

S = fi 2 N ; (9j 2M) (i �! j)g
S0 = N n S:

By Lemma 2.1 we may assume without loss of generality that

A =

0@ A11 " "
A21 A22 A23
" " A33

1A
17



where the individual blocks correspond (in this order) to the sets M;S nM and
S0 respectively. Let us de�ne xk = Ak 
 x for all integers k � 0: We also set

xk1 = xk[M ]

xk2 = xk[S nM ]
xk3 = xk[S0]

Obviously,

xk+11 = A11 
 xk1
xk+12 = A21 
 xk1 �A22 
 xk2 �A23 
 xk3
xk+13 = A33 
 xk3

Assume �rst thatM is non-trivial. Then �(A11) 6= " and by taking (if necessary)
(�(A11))

�1 
 A instead of A; we may assume without loss of generality that
�(A11) = 0: By assumption 3 and Theorem 4.4 we have Ak1+111 = Ak111 for some
k1: By assumption 2 every class of A33 has eigenvalue 0. Since each of these
classes has also period 1 by assumption 3, it follows from Lemma 4.3 that
Ak3+133 = Ak333 for some k3: We may also assume without loss of generality that

x01 = x11 = x
2
1 = :::

x03 = x13 = x
2
3 = :::

Therefore
xk+12 = A21 
 x01 �A22 
 xk2 �A23 
 x03:

Let v = A21 
 x01 �A23 
 x03: We deduce that

xk2 = A
k
22 
 x02 �

�
Ak�122 � :::�A022

�

 v (7)

for all k. Moreover, �(A22) � �(A11) = 0 since M is spectral by assumption 1.
Hence

Ak�122 � :::�A022 = � (A22)
for all k � n: Note that x01 is �nite as an eigenvector of the irreducible matrix
A11: Also, since every node in S has access toM; the vector � (A22)
A21
x01 is
�nite and hence also � (A22)
 v is �nite. If �(A22) < 0 then Ak22 
 x02 �! �1
as k �! 1 and we deduce that xk2 = � (A22) 
 v for all k big enough. If
�(A22) = 0 then

Ak2+122 = Ak222

by the induction hypothesis and thus

xk2 = A
k2
22 
 x02 � � (A22)
 v

for all k � max(k1; k2; k3):
It remains to consider the case when A11 is trivial. Then xk1 = " for all k � 1

and we have �
xk+12

xk+13

�
=

�
A22 A23
" A33

�


�
xk2
xk3

�
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for all k � 1: We apply the induction hypothesis to the matrix�
A22 A23
" A33

�
and deduce that xk+1 = xk for k su¢ ciently big. This completes the proof.

Example 4.1 Let A =

0@ 2 " "
" 1 "
0 0 0

1A ; thus r = 3;�(A) = f0; 1; 2g; Nj =

fjg; j = 1; 2; 3: If x =

0@ 0
0
0

1A ; then O(A; x) is
0@ 2
1
0

1A ;
0@ 4
2
2

1A ;
0@ 6
3
4

1A ;
0@ 8
4
6

1A ; :::
which obviously will never reach an eigenvector. The reason is that 1 =2 T2; 2 =2
T1 but �(N1) 6= �(N2):

Example 4.2 Let A =

0@ 2 " "
" " "
0 0 0

1A ; thus r = 3;�(A) = f0; 2g; Nj = fjg; j =
1; 2; 3: This matrix is robust since both non-trivial classes (N1 and N3) are spec-
tral, p (Aii) = 1 (i = 1; 2; 3) and there are no non-trivial classes Ni; Nj such

that i =2 Tj and j =2 Ti: Indeed, if x =

0@ 0
0
0

1A ; then O(A; x) is
0@ 2
"
0

1A ;
0@ 4
"
2

1A ;
0@ 6
"
4

1A ;
0@ 8
"
6

1A ; :::
hence an eigenvector is reached in the �rst step.

Note that requirements 1. to 3. of Theorem 4.6 imply that every robust
matrix A either has only one superblock or j�(A)j = 1: Obviously this restricts
the concept of robustness for reducible matrices quite signi�cantly. Therefore
we aim to introduce a modi�cation of robustness and provide a criterion which
will enable us to characterise a wider class of matrices displaying robustness
properties re�ecting the rich spectral structure of reducible matrices.
We start with a simple observation.

Lemma 4.4 Let A =
�
A0 "
::: A[M ]

�
be column R-astic, x 2 Rn; M � N and

y = Ak 
 x: If x[N �M ] = " then y[N �M ] = ":
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Proof. Straightforward.
Let x 2 Rn. The set fj 2 N ;xj > "g is called the support of x, notation

s(x). Lemma 4.4 is implying that if M is the support of an eigenvector and
s(x) � M then s(Ak 
 x) � M for all positive integers k: This motivates the
following de�nitions:

De�nition 4.2 Let A = (aij) 2 R
n�n

be in an FNF. Then M � N is called
regular if for some � there is an x 2 V (A; �) with x[M ] �nite and x[N�M ] = ".
We also denote � = �(M):

Remark 4.1 Even ifM is regular there still may exist an x 2 V (A; �(M)) with
xj = " for some j 2M:

Since for a given matrix the �niteness structure of all eigenvectors is well
described (see Section 3) we aim to characterise matrices for which an eigenvec-
tor in V (A; �(M)) for a given regular set M is reached with any starting vector
whose support is a subset of M .
It follows from the decription of V (A) in Section 3 that M is regular if and

only if there exist spectral indices i1; :::; is for some s such thatM = fi 2 N ; i!
Ni1 [ ::: [Nisg.
Let M � N . We denote

Rn(M) = fx 2 Rn � f"g; (8j 2 N �M)(xj = ") g:

De�nition 4.3 Let A = (aij) 2 R
n�n

be a column R-astic matrix in an FNF

and M � N be regular. Then A will be called M -robust if

(8x 2 Rn(M))(9k)Ak 
 x 2 V (A; �(M)):

Theorem 4.7 Let A = (aij) 2 R
n�n

be a column R-astic matrix in an FNF,
M � N be regular and B = A[M ]: Then A is M�robust if and only if p(B) = 1:

Proof. Without loss of generality let A =
�
A[N �M ] "

� � � B

�
:

Supose that A is M -robust. Take x = Aj ; j 2M: Then x 2 R
n
(M) because

A (and therefore also B) is column R-astic and there is a kj such that Ak
Aj 2

V (A; �(M)) for all k � kj : Since Aj =
�

"
Aj [M ]

�
; we have

A

�
Ak 
Aj

�
=

�
"

B 

�
Bk 
Aj [M ]

� � = �(M)
 � "
Bk 
Aj [M ]

�
:

Hence, for k � maxj2M kj there is

Bk+2 = �(M)
Bk+1
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that is p(B) = 1 with � = �(M):
Suppose now Bk+1 = �
Bk for some � and for all k � k0: If the FNF of B

is

B =

0B@ B1 "
...

. . .
� � � � Br

1CA
then

Bk =

0B@ Bk1 "
...

. . .
� � � � Bkr

1CA
and so Bk+1i = � 
 Bki (i = 1; :::; r). But since every Bi is irreducible,
� = �(Bi) = �(M) (i = 1; :::; r): LetM =M1[:::[Mr be the partition ofM de-
termined by the FNF of B: Let x 2 Rn(M); x = (x[N�M ] = "; x[M1]; :::; x[Mr])
and let

s = minfi;x[Mi] 6= "g:
Denote y = Ak 
 x; y = (y[N �M ]; y[M1]; :::; y[Mr]). Clearly, y[N �M ] = "
and

y[Ms] = B
k 
 x[Ms] 6= "

since Bs is irreducible (note that using Corollary 4.1 it would be possible to
prove here that y[Mi] is �nite for all i � s). Hence y 2 Rn(M): At the same
time

Bk+1 
 x[M ] = �
Bk 
 x[M ]
and

y =

�
"

Bk 
 x[M ]

�
:

Therefore

A
 y =
�

"
B 
Bk 
 x[M ]

�
= �(M)


�
"

Bk 
 x[M ]

�
= �(M)
 y:

We conclude that y 2 V (A; �(M)):
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